Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros

Base de dados
Tipo de documento
Intervalo de ano
1.
biorxiv; 2023.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2023.07.02.547368

RESUMO

The cell entry mechanism of SARS-CoV-2, the causative agent of the COVID-19 pandemic, is not fully understood. Most animal viruses hijack cellular endocytic pathways as an entry route into the cell. Here, we show that in cells that do not express serine proteases such as TMPRSS2, genetic depletion of all dynamin isoforms blocked the uptake and strongly reduced infection with SARS-CoV-2 and its variant Delta. However, increasing the viral loads partially and dose-dependently restored infection via a thus far uncharacterized entry mechanism. Ultrastructural analysis by electron microscopy showed that this dynamin-independent endocytic processes appeared as 150-200 nm non-coated invaginations and was efficiently used by numerous mammalian viruses, including alphaviruses, influenza, vesicular stomatitis, bunya, adeno, vaccinia, and rhinovirus. Both the dynamin-dependent and dynamin-independent infection of SARS-CoV-2 required a functional actin cytoskeleton. In contrast, the alphavirus Semliki Forest virus, which is smaller in diameter, required actin only for the dynamin-independent entry. The presence of TMPRSS2 protease rescued SARS-CoV-2 infection in the absence of dynamins. Collectively, these results indicate that some viruses such as canine parvovirus and SARS-CoV-2 mainly rely on dynamin for endocytosis-dependent infection, while other viruses can efficiently bypass this requirement harnessing an alternative infection entry route dependent on actin.


Assuntos
COVID-19 , Estomatite Vesicular , Transtornos Relacionados ao Uso de Substâncias
2.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.12.22.521696

RESUMO

A frequently repeated premise is that viruses evolve to become less pathogenic. This appears also to be true for SARS-CoV-2, although the increased level of immunity in human populations makes it difficult to distinguish between reduced intrinsic pathogenicity and increasing protective immunity. The reduced pathogenicity of the omicron BA.1 sub-lineage compared to earlier variants is well described and appears to be due to reduced utilization of TMPRRS2. That this reduced pathogenicity remains true for omicron BA.5 was recently reported. In sharp contrast, we show that a BA.5 isolate was significantly more pathogenic in K18-hACE2 mice than a BA.1 isolate, with BA.5 infection showing increased neurovirulence, encephalitis and mortality, similar to that seen for an original strain isolate. BA.5 also infected human cortical brain organoids to a greater extent than a BA.1 and original strain isolate. Neurons were the target of infection, with increasing evidence of neuron infection in COVID-19 patients. These results argue that while omicron virus may be associated with reduced respiratory symptoms, BA.5 shows increased neurovirulence compared to earlier omicron sub-variants.


Assuntos
Infecções , COVID-19 , Encefalite , Degeneração Neural
3.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.09.01.458544

RESUMO

Numerous enveloped viruses use specialized surface molecules called fusogens to enter host cells1. During virus replication, these fusogens decorate the host cells membrane enabling them the ability to fuse with neighboring cells, forming syncytia that the viruses use to propagate while evading the immune system. Many of these viruses, including the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), infect the brain and may cause serious neurological symptoms through mechanisms which remain poorly understood2-4. Here we show that expression of either the SARS-CoV-2 spike (S) protein or p15 protein from the baboon orthoreovirus is sufficient to induce fusion between interconnected neurons, as well as between neurons and glial cells. This phenomenon is observed across species, from nematodes to mammals, including human embryonic stem cells-derived neurons and brain organoids. We show that fusion events are progressive, can occur between distant neurites, and lead to the formation of multicellular syncytia. Finally, we reveal that in addition to intracellular molecules, fusion events allow diffusion and movement of large organelles such as mitochondria between fused neurons. Our results provide important mechanistic insights into how SARS-CoV-2 and other viruses could affect the nervous system circuitries causing neurological symptoms.


Assuntos
Infecções por Coronavirus , Síndrome Respiratória Aguda Grave , Doenças do Sistema Nervoso , Encefalopatias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA